On Inviscid Limits for the Stochastic Navier-Stokes Equations and Related Models
نویسندگان
چکیده
We study inviscid limits of invariant measures for the 2D Stochastic Navier-Stokes equations. As shown in [Kuk04] the noise scaling p ν is the only one which leads to non-trivial limiting measures, which are invariant for the 2D Euler equations. We show that any limiting measure μ0 is in fact supported on bounded vorticities. Relationships of μ0 to the long term dynamics of Euler in the L∞ with the weak∗ topology are discussed. In view of the Batchelor-Krainchnan 2D turbulence theory, we also consider inviscid limits for the weakly damped stochastic Navier-Stokes equation. In this setting we show that only an order zero noise (i.e. the noise scaling ν0) leads to a nontrivial limiting measure in the inviscid limit.
منابع مشابه
A Stochastic Lagrangian Representation of the 3-dimensional Incompressible Navier-stokes Equations
In this paper we derive a representation of the deterministic 3dimensional Navier-Stokes equations based on stochastic Lagrangian paths. The particle trajectories obey SDEs driven by a uniform Wiener process; the inviscid Weber formula for the Euler equations of ideal fluids is used to recover the velocity field. This method admits a self-contained proof of local existence for the nonlinear sto...
متن کاملInviscid Limit of Stochastic Damped 2d Navier-stokes Equations
We consider the inviscid limit of the stochastic damped 2D NavierStokes equations. We prove that, when the viscosity vanishes, the stationary solution of the stochastic damped Navier-Stokes equations converges to a stationary solution of the stochastic damped Euler equation and that the rate of dissipation of enstrophy converges to zero. In particular, this limit obeys an enstrophy balance. The...
متن کاملInviscid Large deviation principle and the 2D Navier Stokes equations with a free boundary condition
Using a weak convergence approach, we prove a LPD for the solution of 2D stochastic Navier Stokes equations when the viscosity converges to 0 and the noise intensity is multiplied by the square root of the viscosity. Unlike previous results on LDP for hydrodynamical models, the weak convergence is proven by tightness properties of the distribution of the solution in appropriate functional spaces.
متن کاملInviscid Incompressible Limits of the Full Navier–Stokes–Fourier System
We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on R 3. The Euler-Boussinesq approximation is identified as the limit system.
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کامل